

Northern University, Nowshera

Spring 2024

Abstraction in Java

Week # 14 - Lecture 27 - 28

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

2

LLeeaarrnniinngg OObbjjeeccttiivveess::

 Review – Week 13

a. Polymorphism

b. Types of polymorphism (static & dynamic)

c. Method overloading

d. Operator overloading

e. Method overriding

f. Heading towards dynamic polymorphism

 Virtual methods

 Abstraction

a. Abstract classes

b. Inheriting abstract classes

c. Abstract methods

d. Understanding the real scenario of abstract classes

e. Why we need an abstract class?

f. Why we can’t instantiate objects of abstract class?

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

3

RReevviieeww ((WWeeeekk 1133))

Polymorphism is the same entity (method or operator or object) behaves differently in

different scenarios.

 Polymorphism allows us to perform a single action in different ways. In other words,

polymorphism allows you to define one interface and have multiple implementations.

 The word “poly” means many and “morphs” means forms, so it means many forms.

 Polymorphism is a property through which any message can be sent to objects of

multiple classes, and every object has the tendency to respond in an appropriate way

depending on the class properties.

 It is so important that languages that don’t support polymorphism cannot advertise

themselves as Object-Oriented languages.

 Languages that possess classes but have no ability of polymorphism are called object-

based languages.

Thus it is very vital for an object-oriented programming language.

Types of Polymorphism

In Java, Polymorphism can be divided into two types:

 Compile-time Polymorphism: The compile-time polymorphism can be achieved through

method overloading and operator overloading in Java.

 Run-time Polymorphism: a process in which a function call to the overridden method is

resolved at Runtime. This type of polymorphism is achieved by Method Overriding.

Method Overloading

In a Java class, we can create methods with the same name if they differ in parameters. For

example,

void func() { ... }

void func(int a) { ... }

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

4

float func(double a) { ... }

float func(int a, float b) { ... }

This is known as method overloading in Java. Let's take a working example of method
overloading.

Operator Overloading

Some operators in Java behave differently with different operands. For example,

 + operator is overloaded to perform numeric addition as well as string concatenation,

 operators like &, |, and ! are overloaded for logical and bitwise operations.

Note: In languages like C++, we can define operators to work differently for different

operands. However, Java doesn’t support user-defined operator overloading.

Method overriding on the other hand, occurs when a derived class has a definition for one

of the member functions of the base class. That base function is said to be overridden.

Rules for Method Overriding

 The method signature i.e. method name, parameter list and return type have to match

exactly.

 The overridden method can widen the accessibility but not narrow it, i.e. if it is private

in the base class, the child class can make it public but not vice versa.

 Suppose the same method is created in the superclass and its subclasses. In this case, the

method that will be called depends upon the object used to call the method.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

5

Difference between Overloading and Overriding

Method Overloading Method Overriding

Method overloading is in the same class,

where more than one method have the same

name but different signatures.

Method overriding is when one of the

methods in the super class is redefined in the

sub-class. In this case, the signature of the

method remains the same.

What is Dynamic Polymorphism?

Dynamic Polymorphism is the mechanism by which multiple methods can be defined with

same name and signature in the super class and subclass and the call to an overridden method

are resolved at run time.

Step towards Dynamic Polymorphism

A reference variable of the super class can refer to a sub class object

Doctor obj = new Surgeon();

Consider the statement

obj.treatPatient();

Here the reference variable "obj" is of the parent class, but the object it is pointing to is of the

child class (as shown in the diagram).

obj.treatPatient() will execute treatPatient() method of the sub-class – Surgeon. If a base class

reference is used to call a method, the method to be invoked is decided by the JVM,

depending on the object the reference is pointing to.

For example, even though obj is a reference to Doctor, it calls the method of Surgeon, as it

points to a Surgeon object. This is decided during run-time and hence termed dynamic or run-

time polymorphism

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

6

Another example of method overriding is as follows.

Example 1: Dynamic Polymorphism  Method Overriding

class Animal {

 public void makeSound(){

 System.out.println("Animal sound...");

 }

}

class Dog extends Animal {

 public void makeSound() {

 System.out.println("Dog: Bark bark...");

 }

}

class Cat extends Animal {

 public void makeSound() {

 System.out.println("Cat :Meow meow...");

 }

}

class Main {

 public static void main(String[] args) {

 Dog d1 = new Dog();

 d1.makeSound();

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

7

 Cat c1 = new Cat();

 c1.makeSound();

 System.out.println("\nwhat if we create object of parent: Animal??");

 System.out.println("Do you think the output change??\n");

 Animal a=new Dog();

 a.makeSound();

 a=new Cat();

 a.makeSound();

 System.out.println("Great...This is called dynamic polymorphism

");

 }

}

 Output:

Dog: Bark bark. . .

Cat: Meow-meow. . .

what if we create object of parent: Animal??

Do you think the output change??

Dog: Bark bark...

Cat: Meow meow...

Great...This is called dynamic polymorphism

In the above example, the method makeSound() has different implementations in two

different classes. When we run the program,

 the expression d1.makeSound() will call the method of Dog class. It is because d1 is an

object of the Dog class.

 the expression c1.makeSound() will call the method of Cat class. It is because c1 is an

object of the cat class.

 But the call a.makeSound() calls method based on referenced class object

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

8

VViirrttuuaall MMeetthhooddss

In this section, I will show you how the behavior of overridden methods in Java allows you to

take advantage of polymorphism when designing your classes.

We already have discussed method overriding, where a child class can override a method in its

parent. An overridden method is essentially hidden in the parent class, and is not invoked

unless the child class uses the super keyword within the overriding method.

Example

public class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public void mail_Cheque() {

 System.out.println("Mailing a Cheque to " + this.name + " " + this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

9

 public String getAddress() {

 return address;

 }

 public int getNumber() {

 return number;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

}

Now suppose we extend Employee class as follows:

public class Salary extends Employee {

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double salary) {

 super(name, address, number);

 setSalary(salary);

 }

 public void mail_ Cheque() {

 System.out.println("Within mail_Cheque of Salary class ");

 System.out.println("Mailing Cheque to " + getName() + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

10

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary;

 }

}

Now, you study the following program carefully and try to determine its output −

public class VirtualDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Ali", "DHA Phase 4", 3, 3600.00);

 Employee e = new Salary("M. Azeem", "i-10/4, ISB", 2, 2400.00);

 System.out.println("Call mailCheque using Salary reference --");

 s.mailCheque();

 System.out.println(" Call mailCheque using Employee reference--");

 e.mailCheque();

 }}

This will produce the following result

Constructing an Employee

Constructing an Employee

This will produce the following result −

Call mailCheque using Salary reference --

Within mailCheque of Salary classs

Mailing checque to Mohd Ali with salary 3600.0

Call mailCheque using Employee reference--

Within mailCheque of Salary class

Mailing cheque M. Azeem with salary 2400.0

Here, we instantiate two Salary objects, one using a Salary reference s, and the other using an

Employee reference e.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

11

While invoking s.mailCheque(), the compiler sees mailCheque() in the Salary class at compile

time, and the JVM invokes mailCheque() in the Salary class at run time.

mailCheque () on e is quite different because e is an Employee reference. When the compiler

sees e.mailCheque (), the compiler sees the mailCheque () method in the Employee class.

Here, at compile time, the compiler used mailCheque () in Employee to validate this

statement. At run time, however, the JVM invokes mailCheque () in the Salary class.

This behavior is referred to as virtual method invocation, and these methods are referred to as

virtual methods. An overridden method is invoked at run time, no matter what data type the

reference is that was used in the source code at compile time.

AAbbssttrraaccttiioonn

In Object-oriented programming, abstraction is a process of hiding the implementation details

from the user, only the functionality will be provided to the user. In other words, the user will

have the information on what the object does instead of how it does it. For example, when

you consider the case of e-mail, complex details such as what happens as soon as you send an

e-mail, the protocol your e-mail server uses are hidden from the user. Therefore, to send an e-

mail you just need to type the content, mention the address of the receiver, and click send.

In Java, abstraction is achieved using Abstract classes and interfaces.

AAbbssttrraacctt CCllaassss

A class which contains the abstract keyword in its declaration is known as abstract class.

Abstract classes may or may not contain abstract methods, i.e., methods without body (public void get();)

 But, if a class has at least one abstract method, then the class must be declared

abstract.

 If a class is declared abstract, it cannot be instantiated.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

12

 To use an abstract class, you have to inherit it from another class, provide

implementations to the abstract methods in it.

 If you inherit an abstract class, you have to provide implementations to all the abstract

methods in it.

Example

This section provides you an example of the abstract class. To create an abstract class, just use

the abstract keyword before the class keyword, in the class declaration.

public abstract class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

13

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public double computePay() {

 System.out.println("Inside Employee computePay");

 return 0.0;

 }

 public void mailCheck() {

 System.out.println("Mailing a check to " + this.name + " " + this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

 public int getNumber() {

 return number;

 }

}

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

14

You can observe that except abstract methods the Employee class is same as normal class in

Java. The class is now abstract, but it still has three fields, seven methods, and one constructor.

Now you can try to instantiate the Employee class in the following way −

/* File name : AbstractDemo.java */

public class AbstractDemo {

 public static void main(String [] args) {

 /* Following is not allowed and would raise error */

 Employee e = new Employee("Ali ahmed.", "H-9/2", 43000);

 System.out.println("\n Call mailCheck using Employee reference--");

 e.mailCheck();

 }

}

When you compile the above class, it gives you the following error −

Employee.java:46: Employee is abstract; cannot be instantiated

 Employee e = new Employee("Ali ahmed.", "H-9/2", 43000);

IInnhheerriittiinngg AAbbssttrraacctt CCllaassss

We can inherit the properties of Employee class just like concrete class in the following way −

Example

/* File name : Salary.java */

public class Salary extends Employee {

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double salary) {

 super(name, address, number);

 setSalary(salary);

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

15

 }

 public void mailCheck() {

 System.out.println("Within mailCheck of Salary class ");

 System.out.println("Mailing check to " + getName() + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary;

 }

}

Here, you cannot instantiate the Employee class, but you can instantiate the Salary Class, and

using this instance you can access all the three fields and seven methods of Employee class as

shown below.

public class AbstractDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3, 3600.00);

 Employee e = new Salary("John Adams", "Boston, MA", 2, 2400.00);

 System.out.println("Call mailCheck using Salary reference --");

 s.mailCheck();

 System.out.println("\n Call mailCheck using Employee reference--");

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

16

 e.mailCheck();

 }

}

This produces the following result

Output

Constructing an Employee

Constructing an Employee

Call mailCheque using Salary reference --

Within mailCheque of Salary class

Mailing cheque to Mohd Mohtashim with salary 3600.0

 Call mailCheque using Employee reference--

Within mailCheque of Salary class

Mailing cheque to John Adams with salary 2400.0

AAbbssttrraacctt MMeetthhooddss

If you want a class to contain a particular method but you want the actual implementation of

that method to be determined by child classes, you can declare the method in the parent class

as an abstract.

 Abstract keyword is used to declare the method as abstract.

 You have to place the abstract keyword before the method name in the method

declaration.

 An abstract method contains a method signature, but no method body.

 Instead of curly braces, an abstract method will have a semoi colon (;) at the end.

Following is an example of the abstract method.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

17

Example

public abstract class Employee {

 private String name;

 private String address;

 private int number;

 public abstract double computePay();

 // Remainder of class definition

}

Declaring a method as abstract has two consequences −

 The class containing it must be declared as abstract.

 Any class inheriting the current class must either override the abstract method or

declare itself as abstract.

Note − eventually, a descendant class has to implement the abstract method; otherwise, you

would have a hierarchy of abstract classes that cannot be instantiated.

Suppose Salary class inherits the Employee class, then it should implement

the computePay() method as shown below −

/* File name : Salary.java */

public class Salary extends Employee {

 private double salary; // Annual salary

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary;

 }

 // Remainder of class definition

}

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

18

UUnnddeerrssttaannddiinngg tthhee rreeaall sscceennaarriioo ooff AAbbssttrraacctt ccllaassss

In this example, Shape is the abstract class, and its implementation is provided by the

Rectangle and Circle classes.

In this example, if you create the instance of Rectangle class, draw() method of Rectangle class

will be invoked.

abstract class Shape{

abstract void draw();

}

//In real scenario, implementation is provided by others i.e. unknown by end user

class Rectangle extends Shape{

void draw(){

 System.out.println("drawing rectangle");

}

}

class Circle1 extends Shape{

void draw(){

System.out.println("drawing circle");

}

}

//In real scenario, method is called by programmer or user

class TestAbstraction1{

public static void main(String args[]){

Shape s=new Circle1();//In a real scenario, object is provided through method, e.g., getS

hape() method

s.draw();

}

}

OUTPUT: drawing circle

Example of Abstract class in java: Figure class

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

19

// Using run-time polymorphism.

class Figure {

 double dim1;

 double dim2;

 Figure(double a, double b) {

 dim1 = a;

 dim2 = b;

 }

 double area() {

 System.out.println("Area for Figure is undefined.");

 return 0;

 }

 }

class Rectangle extends Figure {

 Rectangle(double a, double b) {

 super(a, b);

 }

 // override area for rectangle

double area() {

 System.out.println("Inside Area for Rectangle.");

 return dim1 * dim2;

 }

}

class Triangle extends Figure {

 Triangle(double a, double b) {

 super(a, b);

 }

 // override area for right triangle

double area() {

 System.out.println("Inside Area for Triangle.");

 return dim1 * dim2 / 2;

 }

}

class FindAreas {

 public static void main(String args[]) {

 Figure f = new Figure(10, 10);

 Rectangle r = new Rectangle(9, 5);

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

20

 Triangle t = new Triangle(10, 8);

 Figure figref;

 figref = r;

 System.out.println("Area is " + figref.area());

 figref = t;

 System.out.println("Area is " + figref.area());

 figref = f;

 System.out.println("Area is " + figref.area());

 }

}

Output:

Inside Area for Rectangle.

Area is 45.0

Inside Area for Triangle.

Area is 40.0

Area for Figure is undefined.

Area is 0.0

Above output highlighted is ambiguous that is corrected using abstract class.

// Using run-time polymorphism.

abstract class Figure {

 double dim1;

 double dim2;

 Figure(double a, double b) {

 dim1 = a;

 dim2 = b;

 }

 //abstract method

 abstract double area();

 }

class Rectangle extends Figure {

 Rectangle(double a, double b) {

 super(a, b);

 }

 // override area for rectangle

double area() {

 System.out.println("Inside Area for Rectangle.");

 return dim1 * dim2;

 }

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

21

}

class Triangle extends Figure {

 Triangle(double a, double b) {

 super(a, b);

 }

 // override area for right triangle

double area() {

 System.out.println("Inside Area for Triangle.");

 return dim1 * dim2 / 2;

 }

}

public class FindAreas {

 public static void main(String args[]) {

 Rectangle r = new Rectangle(9, 5);

 Triangle t = new Triangle(10, 8);

 Figure figref;

 figref = r;

 System.out.println("Area is " + figref.area());

 figref = t;

 System.out.println("Area is " + figref.area());

 }

}

Another example of Abstract class in java: Bank Class

abstract class Bank{

abstract int getRateOfInterest();

}

class SBI extends Bank{

int getRateOfInterest(){return 7;}

}

class PNB extends Bank{

int getRateOfInterest(){return 8;}

}

class TestBank{

public static void main(String args[]){

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

22

Bank b;

b=new SBI();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

b=new PNB();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

}}

WWhhyy wwee nneeeedd aann aabbssttrraacctt ccllaassss??

Let’s say we have a class Animal that has a method sound() and the subclasses of it

like Dog, Lion, Horse, Cat etc.

 Since the animal sound differs from one animal to another, there is no point to

implement this method in parent class.

 This is because every child class must override this method to give its own

implementation details, like Lion class will say “Roar” in this method and Dog class will

say “Woof”.

 Thus, making this method abstract would be the good choice as by making this method

abstract we force all the sub classes to implement this method(otherwise you will get

compilation error), also we need not to give any implementation to this method in

parent class.

 Since the Animal class has an abstract method, you must need to declare this class

abstract.

 Now each animal must have a sound, by making this method abstract we made it

compulsory to the child class to give implementation details to this method.

 This way we ensures that every animal has a sound.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

23

RRuulleess

Note 1: As we seen in the above example, there are cases when it is difficult or often

unnecessary to implement all the methods in parent class. In these cases, we can declare the

parent class as abstract, which makes it a special class which is not complete on its own.

A class derived from the abstract class must implement all those methods that are declared as

abstract in the parent class.

Note 2: Abstract class cannot be instantiated which means you cannot create the object of it.

To use this class, you need to create another class that extends this this class and provides the

implementation of abstract methods, then you can use the object of that child class to call

non-abstract methods of parent class as well as implemented methods(those that were

abstract in parent but implemented in child class).

Note 3: If a child does not implement all the abstract methods of abstract parent class, then

the child class must need to be declared abstract as well.

Do you know? Since abstract class allows concrete methods as well, it does not

provide 100% abstraction. You can say that it provides partial abstraction. Abstraction is a

process where you show only “relevant” data and “hide” unnecessary details of an object from

the user. Interfaces on the other hand are used for 100% abstraction (Discuss in later classes).

WWhhyy ccaann’’tt wwee ccrreeaattee tthhee oobbjjeecctt ooff aann aabbssttrraacctt ccllaassss??

Because these classes are

 incomplete, they have abstract methods that have no body so if java allows you to

create object of this class then if someone calls the abstract method using that object

then What would happen? There would be no actual implementation of the method to

invoke.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

24

 Also because an object is concrete. An abstract class is like a template, so you have to

extend it and build on it before you can use it.

AJ/ Week 14-Lecture 27-28 Object Oriented Programming using Java (ECS-122)

25

AAssssiiggnnmmeenntt ##1133

Consider the following Main class and write required classes using the concept “abstract

classes and methods”. Example output is given below.

Note: viewAccountNumber() is an abstract method while CheckingAccount and SavingsAccount

are non-abstract.

public class Week14 {
}
class Main {
 public static void main(String[] args) {
 CheckingAccount aliCheckingAccount = new CheckingAccount();
 aliCheckingAccount.viewAccountNumber();
 SavingsAccount aliSavingsAccount = new SavingsAccount();
 aliSavingsAccount.viewAccountNumber();
 }
}

Example Output
Checking account number: #1932042555
Savings account number: #1932042777

